If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+35x+28=0
a = 1; b = 35; c = +28;
Δ = b2-4ac
Δ = 352-4·1·28
Δ = 1113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{1113}}{2*1}=\frac{-35-\sqrt{1113}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{1113}}{2*1}=\frac{-35+\sqrt{1113}}{2} $
| 4-12x=100 | | 8x+3+3x-8=4x-39 | | 5(3x+8)=15x-10 | | 3/4(x)-1.75=-6.85 | | 4.3t-2-1t-2.3=7.6 | | 5x(6x)=144 | | X.x+5.7=8.2 | | 40/12=15/x | | 1/8x+3/4=3 | | 2x+2x+6=90 | | -14x19=303 | | 2×3y=-9 | | -5+12x-18x=7 | | 5x/3x=550/150 | | 6=7x-2x-9 | | (5x/3x)=(550/150) | | x+3+5x=0 | | 8=24/x=3 | | 5a2–12a+28=0 | | 13y+10y-3=5y^2 | | 4a+-3=13 | | (x+5)(4x-4)(3x+3)=0 | | -1+4w=w-19-4+4w | | 0=-10y-5 | | w/8+3=-1 | | (−4x+5)−(6x+7)=x0 | | (−4+5)−(6+7)=xx0 | | 2x-50=4x=14 | | -47-12x=-9x=13 | | -9x-29=21-11x | | 58-12x-(29-12x)=29 | | 8x-107=-6=131 |